Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
2.
Journal of Health Care for the Poor and Underserved ; 34(1):21-34, 2023.
Article in English | ProQuest Central | ID: covidwho-2315281

ABSTRACT

Certain populations have been excluded from the benefits of telehealth and the recent advances and widespread use of technology in health promotion due to limited technology access. Although research has identified these specific groups, none has explored these issues using the social determinants of health (SDH) framework. This exploratory study aimed 1) to investigate technology access and 2) to identify associated SDHs. A cross-sectional research design was implemented, and participants were recruited from rural Alabama (N=185). Binary logistic regressions were conducted. Only 60% of participants had technology access. People with food insecurity and health illiteracy were less likely to have internet and PC/tablet access. In addition, older age was associated with a lower likelihood of access to a smartphone. This study provided insights into SDH correlates of the digital divide, particularly among rural African Americans, and indicated that addressing affordability could be a partial solution.

3.
Front Public Health ; 11: 1121846, 2023.
Article in English | MEDLINE | ID: covidwho-2317196

ABSTRACT

Purpose: By serving and providing a guide for other regional places, this study aims to advance and guide the epidemic prevention and control methods, and practices and strengthen people's ability to respond to COVID-19 and other future potential public health risks. Design/methodology/approach: A comparative analysis was conducted that the COVID-19 epidemic development trend and prevention and control effects both in Beijing and Shanghai. In fact, regarding the COVID-19 policy and strategic areas, the differences between governmental, social, and professional management were discussed and explored. To prevent and be ready for potential pandemics, experience and knowledge were used and summarized. Findings: The strong attack of the Omicron variant in early 2022 has posed challenges to epidemic prevention and control practices in many Chinese cities. Shanghai, which had achieved relatively good performance in the fight against the epidemic, has exposed limitations in its epidemic prevention and control system in the face of Omicron. In fact, the city of Beijing has undertaken prompt and severe lockdown measures and achieved rather good results in epidemic prevention and control because of learning from Shanghai's experience and lessons; adhering to the overall concept of "dynamic clearing," implementing precise prevention and monitoring, enhancing community control, and making emergency plans and preparations. All these actions and measures are still essential in the shift from pandemic response to pandemic control. Research limitations/implications: Different places have introduced different urgent policies to control the spread of the pandemic. Strategies to control COVID-19 have often been based on preliminary and limited data and have tended to be slow to evolve as new evidence emerges. Hence, the effects of these anti-epidemic policies need to be further tested.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2 , Beijing/epidemiology , Communicable Disease Control/methods , China/epidemiology , Pandemics/prevention & control
4.
Talanta ; 258: 124476, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-2308939

ABSTRACT

Porcine epidemic diarrhea (PED) is a serious disease requiring a simple and accurate detection method. Accordingly, this study developed a novel, ultrasensitive photoelectrochemical (PEC) sensing platform using the loop-mediated isothermal amplification (LAMP) technique (LAMP-PEC). An amino (-NH2)-modified LAMP product is obtained by amplification of the PED virus gene with specially designed primers. The generated NH2-modified LAMP product is assembled on the surface of an electrode by forming imine linkages between aldehyde and amino groups based on the Schiff base reaction. A stable photocurrent is provided by a CdIn2S4 photoactive material, which possesses high photoelectric conversion efficiency. Amplified DNA assembled on the electrode surface increases steric hindrance and hinders electrons from moving from the electrode to electron acceptors, which decreases the photocurrent. This strategy can detect PEDV with a low detection limit of 0.3 fg µL-1 and a wide linear range of 1 × 10-3-1 × 102 pg/µL. The sensing platform has excellent specificity and sensitivity and can be used for the quantitative detection of many other pathogens with the assistance of LAMP.


Subject(s)
DNA , Nucleic Acid Amplification Techniques , Animals , Swine , Nucleic Acid Amplification Techniques/methods , Molecular Diagnostic Techniques
5.
Pattern Recognition ; 140:N.PAG-N.PAG, 2023.
Article in English | Academic Search Complete | ID: covidwho-2305482

ABSTRACT

• A new learning mechanism for medical image segmentation. We introduce a novel Geometric Structure Learning Mechanism (GSLM) that enhances model learning "focus, path, and difficulty". It enables geometric structure attention learning to bridge image features with large differences, thus capturing the contextual dependencies of images. The image features maintain consistency and continuity along the internal and external geometry structure, which improves the integrity and boundary accuracy of the segmentation results. To the best of our knowledge, we are the first attempt to explicitly establish the target's geometric structure, which has been successfully applied to medical image segmentation. • A novel geometric structure adversarial learning for robust medical image segmentation. We present the geometric structure adversarial learning model (GSAL) that consists of a geometric structure generator, skeleton-like and boundary discriminators, and a geometric structure fusion sub-network. The generator yields the geometric structure that preserves interior characteristics consistency and external boundary structure continuity. The dual discriminators are trained simultaneously to enhance and correct the characterization of interior structure and boundary structure, respectively. The fusion sub-network aims to fuse the geometric structure that optimized by adversarial learning to refine the final segmentation results with higher credibility. • State-of-art results on widely-used benchmarks. Our GSAL achieves SOTA performance on a variety of benchmarks, including Kvasir&CVC-612 dataset, COVID-19 dataset, and LIDC-IDRI dataset. It confirms the robustness and generalizability of our framework. In addition, our method has great advantages in terms of the integrity and boundary accuracy of the segmentation target compared to other competitive methods. GSAL can also achieve a considerable trade-off in terms of accuracy, inference speed, and model complexity, which helps deploy in clinical practice systems. Automatic medical image segmentation plays a crucial role in clinical diagnosis and treatment. However, it is still a challenging task due to the complex interior characteristics (e.g. , inconsistent intensity, low contrast, texture heterogeneity) and ambiguous external boundary structures. In this paper, we introduce a novel geometric structure learning mechanism (GSLM) to overcome the limitations of existing segmentation models that lack learning "focus, path, and difficulty." The geometric structure in this mechanism is jointly characterized by the skeleton-like structure extracted by the mask distance transform (MDT) and the boundary structure extracted by the mask distance inverse transform (MDIT). Among them, the skeleton-like and boundary pay attention to the trend of interior characteristics consistency and external structure continuity, respectively. With this idea, we design GSAL, a novel end-to-end geometric structure adversarial learning for robust medical image segmentation. GSAL has four components: a geometric structure generator, which yields the geometric structure to learn the most discriminative features that preserve interior characteristics consistency and external boundary structure continuity, skeleton-like and boundary structure discriminators, which enhance and correct the characterization of internal and external geometry to mutually promote the capture of global contextual dependencies, and a geometric structure fusion sub-network, which fuses the two complementary and refined skeleton-like and boundary structures to generate the high-quality segmentation results. The proposed approach has been successfully applied to three different challenging medical image segmentation tasks, including polyp segmentation, COVID-19 lung infection segmentation, and lung nodule segmentation. Extensive experimental results demonstrate that the proposed GSAL achieves favorably against most state-of-the-art methods under different evaluation metrics. The code is available at: https://github.com/DLWK/GSAL. [ BSTRACT FROM AUTHOR] Copyright of Pattern Recognition is the property of Pergamon Press - An Imprint of Elsevier Science and its content may not be copied or emailed to multiple sites or posted to a listserv without the copyright holder's express written permission. However, users may print, download, or email articles for individual use. This may be abridged. No warranty is given about the accuracy of the copy. Users should refer to the original published version of the material for the full . (Copyright applies to all s.)

6.
Medicine ; 3(2):97-100, 2022.
Article in English | EuropePMC | ID: covidwho-2302715

ABSTRACT

Luteolin is a natural flavonoid that has a variety of pharmacological activities, such as anti-inflammatory, anti-allergic, anti-bacterial, anti-viral, apoptosis inhibition, cell autophagy regulation, and anti-tumor activity. It is one of the main ingredients of an expert-recommended herbal formula for the prevention and treatment of coronavirus disease 2019 (COVID-19). This suggests that luteolin has strong pharmacological effects on the prevention and treatment of COVID-19. The aims of this study were to identify the molecular targets of luteolin and to infer the possible mechanisms by which it exerts its pharmacological effects. The GSE159787 data set was obtained from the Gene Expression Omnibus online database, and differentially expressed genes were analyzed. There were 22 upregulated differentially expressed genes enriched in the COVID-19 signaling pathway, suggesting that the upregulation of these genes may be closely related to the occurrence of COVID-19. Molecular docking results showed that luteolin had strong binding efficiency to 20 of these 22 key genes. Six of these genes (CFB, EIF2AK2, OAS1, MAPK11, OAS3, and STAT1) showed strong binding activity. Luteolin can regulate the COVID-19 signaling pathway by combining with these targets, which may have a therapeutic effect on COVID-19.

7.
Antiviral Res ; 214: 105606, 2023 06.
Article in English | MEDLINE | ID: covidwho-2298798

ABSTRACT

The emergence of SARS-CoV-2 variants represents a major threat to public health and requires identification of novel therapeutic agents to address the unmet medical needs. Small molecules impeding viral entry through inhibition of spike protein priming proteases could have potent antiviral effects against SARS-CoV-2 infection. Omicsynin B4, a pseudo-tetrapeptides identified from Streptomyces sp. 1647, has potent antiviral activity against influenza A viruses in our previous study. Here, we found omicsynin B4 exhibited broad-spectrum anti-coronavirus activity against HCoV-229E, HCoV-OC43 and SARS-CoV-2 prototype and its variants in multiple cell lines. Further investigations revealed omicsynin B4 blocked the viral entry and might be related to the inhibition of host proteases. SARS-CoV-2 spike protein mediated pseudovirus assay supported the inhibitory activity on viral entry of omicsynin B4 with a more potent inhibition of Omicron variant, especially when overexpression of human TMPRSS2. Moreover, omicsynin B4 exhibited superior inhibitory activity in the sub-nanomolar range against CTSL, and a sub-micromolar inhibition against TMPRSS2 in biochemical assays. The molecular docking analysis confirmed that omicsynin B4 fits well in the substrate binding sites and forms a covalent bond to Cys25 and Ser441 in CTSL and TMPRSS2, respectively. In conclusion, we found that omicsynin B4 may serve as a natural protease inhibitor for CTSL and TMPRSS2, blocking various coronavirus S protein-driven entry into cells. These results further highlight the potential of omicsynin B4 as an attractive candidate for broad-spectrum antiviral therapy that could rapidly respond to emerging variants of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/metabolism , Cathepsin L/metabolism , Peptide Hydrolases , Molecular Docking Simulation , Spike Glycoprotein, Coronavirus/metabolism , Virus Internalization , Antiviral Agents/pharmacology , Serine Endopeptidases/pharmacology
8.
J Control Release ; 358: 128-141, 2023 06.
Article in English | MEDLINE | ID: covidwho-2303394

ABSTRACT

Neutralising monoclonal antibody (mAb) is an important weapon in our arsenal for combating respiratory viral infections. However, the effectiveness of neutralising mAb has been impeded by the rapid emergence of mutant variants. Early administration of broad-spectrum mAb with improved delivery efficiency can potentially enhance efficacy and patient outcomes. WKS13 is a humanised mAb which was previously demonstrated to exhibit broad-spectrum activity against SARS-CoV-2 variants. In this study, a dual targeting formulation strategy was designed to deliver WKS13 to both the nasal cavity and lower airways, the two critical sites of infection caused by SARS-CoV-2. Dry powders of WKS13 were first prepared by spray drying, with cyclodextrin used as stabiliser excipient. Two-fluid nozzle (TFN) was used to produce particles below 5 µm for lung deposition (C-TFN formulation) and ultrasonic nozzle (USN) was used to produce particles above 10 µm for nasal deposition (C-USN formulation). Gel electrophoresis and size exclusion chromatography studies showed that the structural integrity of mAb was successfully preserved with no sign of aggregation after spray drying. To achieve dual targeting property, C-TFN and C-USN were mixed at various ratios. The aerosolisation property of the mixed formulations dispersed from a nasal powder device was examined using a Next Generation Impactor (NGI) coupled with a glass expansion chamber. When the ratio of C-TFN in the mixed formulation increased, the fraction of particles deposited in the lung increased proportionally while the fraction of particles deposited in the nasal cavity decreased correspondingly. A customisable aerosol deposition profile could therefore be achieved by manipulating the mixing ratio between C-TFN and C-USN. Dual administration of C-TFN and C-USN powders to the lung and nasal cavity of hamsters, respectively, was effective in offering prophylactic protection against SARS-CoV-2 Delta variant. Viral loads in both the lung tissues and nasal wash were significantly reduced, and the efficacy was comparable to systemic administration of unformulated WKS13. Overall, dual targeting powder formulation of neutralising mAb is a promising approach for prophylaxis of respiratory viral infections. The ease and non-invasive administration of dual targeting nasal powder may facilitate the widespread distribution of neutralising mAb during the early stage of unpredictable outbreaks.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Humans , Powders , SARS-CoV-2 , Respiratory Aerosols and Droplets , Administration, Inhalation , Particle Size , Dry Powder Inhalers
10.
Viruses ; 15(3)2023 03 06.
Article in English | MEDLINE | ID: covidwho-2253490

ABSTRACT

The emergence of new immune-evasive severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants and subvariants outpaces the development of vaccines specific against the dominant circulating strains. In terms of the only accepted immune correlate of protection, the inactivated whole-virion vaccine using wild-type SARS-CoV-2 spike induces a much lower serum neutralizing antibody titre against the Omicron subvariants. Since the inactivated vaccine given intramuscularly is one of the most commonly used coronavirus disease 2019 (COVID-19) vaccines in developing regions, we tested the hypothesis that intranasal boosting after intramuscular priming would provide a broader level of protection. Here, we showed that one or two intranasal boosts with the Fc-linked trimeric spike receptor-binding domain from wild-type SARS-CoV-2 can induce significantly higher serum neutralizing antibodies against wild-type SARS-CoV-2 and the Omicron subvariants, including BA.5.2 and XBB.1, with a lower titre in the bronchoalveolar lavage of vaccinated Balb/c mice than vaccination with four intramuscular doses of inactivated whole virion vaccine. The intranasally vaccinated K18-hACE2-transgenic mice also had a significantly lower nasal turbinate viral load, suggesting a better protection of the upper airway, which is the predilected site of infection by Omicron subvariants. This intramuscular priming and intranasal boosting approach that achieves broader cross-protection against Omicron variants and subvariants may lengthen the interval required for changing the vaccine immunogen from months to years.


Subject(s)
COVID-19 , Turbinates , Mice , Animals , SARS-CoV-2/genetics , Viral Load , COVID-19/prevention & control , Mice, Transgenic , Antibodies, Neutralizing , COVID-19 Vaccines , Mice, Inbred BALB C , Antibodies, Viral , Spike Glycoprotein, Coronavirus/genetics
11.
Signal Transduct Target Ther ; 8(1): 42, 2023 Jan 21.
Article in English | MEDLINE | ID: covidwho-2230292

ABSTRACT

The Omicron variants of SARS-CoV-2, primarily authenticated in November 2021 in South Africa, has initiated the 5th wave of global pandemics. Here, we systemically examined immunological and metabolic characteristics of Omicron variants infection. We found Omicron resisted to neutralizing antibody targeting receptor binding domain (RBD) of wildtype SARS-CoV-2. Omicron could hardly be neutralized by sera of Corona Virus Disease 2019 (COVID-19) convalescents infected with the Delta variant. Through mass spectrometry on MHC-bound peptidomes, we found that the spike protein of the Omicron variants could generate additional CD8 + T cell epitopes, compared with Delta. These epitopes could induce robust CD8 + T cell responses. Moreover, we found booster vaccination increased the cross-memory CD8 + T cell responses against Omicron. Metabolic regulome analysis of Omicron-specific T cell showed a metabolic profile that promoted the response of memory T cells. Consistently, a greater fraction of memory CD8 + T cells existed in Omicron stimulated peripheral blood mononuclear cells (PBMCs). In addition, CD147 was also a receptor for the Omicron variants, and CD147 antibody inhibited infection of Omicron. CD147-mediated Omicron infection in a human CD147 transgenic mouse model induced exudative alveolar pneumonia. Taken together, our data suggested that vaccination booster and receptor blocking antibody are two effective strategies against Omicron.


Subject(s)
COVID-19 , Humans , Animals , Mice , COVID-19/genetics , Leukocytes, Mononuclear , SARS-CoV-2 , Antibodies, Neutralizing , Epitopes , Mice, Transgenic
12.
Int J Mol Sci ; 24(3)2023 Feb 03.
Article in English | MEDLINE | ID: covidwho-2225338

ABSTRACT

Both periodontitis and Coronavirus disease 2019 (COVID-19) pose grave threats to public health and social order, endanger human life, and place a significant financial strain on the global healthcare system. Since the COVID-19 pandemic, mounting research has revealed a link between COVID-19 and periodontitis. It is critical to comprehend the immunological mechanisms of the two illnesses as well as their immunological interaction. Much evidence showed that there are many similar inflammatory pathways between periodontitis and COVID-19, such as NF-κB pathway, NLRP3/IL-1ß pathway, and IL-6 signaling pathway. Common risk factors such as gender, lifestyle, and comorbidities contribute to the severity of both diseases. Revealing the internal relationship between the two diseases is conducive to the treatment of the two diseases in an emergency period. It is also critical to maintain good oral hygiene and a positive attitude during treatment. This review covers four main areas: immunological mechanisms, common risk factors, evidence of the association between the two diseases, and possible interventions and potential targets. These will provide potential ideas for drug development and clinical treatment of the two diseases.


Subject(s)
COVID-19 , Periodontitis , Humans , SARS-CoV-2 , Pandemics , Periodontitis/epidemiology , NF-kappa B
14.
Resources Policy ; 80:103268, 2023.
Article in English | ScienceDirect | ID: covidwho-2165804

ABSTRACT

Sustainable economic development and green recovery in the post-COVID-19 era in China requires consideration of natural resource dependence (NRD) and environmental regulation (ER) of CO2 emissions. Based on panel data covering 2008 and 2018 in China, this paper explores the impacts of NRD on carbon emissions and the moderating role of ER. In addition, the heterogeneity, asymmetry, and mediating mechanism are investigated in this study. Following are the main conclusions: (1) Decreasing the dependence on natural resources and strengthening ER can effectively cut down CO2 emissions, and the enhanced ER can reduce the contribution of NRD to CO2 emissions;(2) the positive influence of NRD on carbon emissions are consistent in various regions, while the influence of ER on CO2 emissions is negative in areas with high levels of NRD;(3) the reduced natural resources dependence can accelerate the carbon emissions reduction process indirectly by causing a reduction in China's total energy demand and coal consumption and accelerating the green technological innovation. The findings present several policy recommendations for achieving carbon emissions reduction.

15.
Economic Analysis and Policy ; 2023.
Article in English | ScienceDirect | ID: covidwho-2165225

ABSTRACT

China's economy and environment urgently require a green recovery as COVID-19's consequences expand over time, and the platform economy is a practical means of pursuing this goal. By employing the Generalized Divisia Index Method (GDIM), this paper aims to analyze the impact of platform economy on carbon emissions in China during the period 2013–2020. Overall, the platform economy has increased carbon emissions, but there was a decrease in carbon emissions in the platform economy between 2014 and 2016. The scale factors of platform economy are the primary contributors to the increase in China's overall emissions and most provincial carbon emissions, while the carbon intensity of platform economy factors contributes most to the decrease in carbon emissions. In particular, the carbon intensity of platform economy factors promoted the most cumulative carbon emissions in Jiangsu, Heilongjiang, Yunnan, Qinghai, and Ningxia between 2013 and 2020, and the energy intensity of platform economy factors reduced most of the cumulative carbon emissions of Heilongjiang, Yunnan, Qinghai, and Xinjiang during the same period. From the perspective of the heterogeneity of platform economic development, the main contributors of carbon mitigation from high-platform economic provinces are intensity effects. However, the platform economic structure of low-platform economic provinces significantly reduces carbon emissions. In addition, we also found significant differences in the factors influencing emissions in different groups under the influence of the pandemic. Finally, we provide some valuable references for China's platform economic development to achieve "carbon neutrality” targets.

16.
Front Pharmacol ; 13: 930593, 2022.
Article in English | MEDLINE | ID: covidwho-2148124

ABSTRACT

Acute respiratory distress syndrome (ARDS) is a common critical illness in respiratory care units with a huge public health burden. Despite tremendous advances in the prevention and treatment of ARDS, it remains the main cause of intensive care unit (ICU) management, and the mortality rate of ARDS remains unacceptably high. The poor performance of ARDS is closely related to its heterogeneous clinical syndrome caused by complicated pathophysiology. Based on the different pathophysiology phases, drugs, protective mechanical ventilation, conservative fluid therapy, and other treatment have been developed to serve as the ARDS therapeutic methods. In recent years, there has been a rapid development in nanomedicine, in which nanoparticles as drug delivery vehicles have been extensively studied in the treatment of ARDS. This study provides an overview of pharmacologic therapies for ARDS, including conventional drugs, natural medicine therapy, and nanomedicine. Particularly, we discuss the unique mechanism and strength of nanomedicine which may provide great promises in treating ARDS in the future.

17.
Processes ; 10(11):2213, 2022.
Article in English | MDPI | ID: covidwho-2090310

ABSTRACT

COVID-19 is a global pandemic infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The herbal formula, Ping An Fang Yu Yin (PAFYY), has been used to prevent respiratory viral infections for many years. This study aims to evaluate the effect of PAFYY on SARS-CoV-2 infection, oxidative stress, and inflammation via in vitro, investigate the chemical composition by full constituent quantitative analysis, and verify its anti-viral potential against SARS-CoV-2 using in silico. In this study, a total of eleven compounds, twenty amino acids, saccharide compositions, and trace elements were found and quantitatively determined by chromatographic techniques. PAFYY displayed free radical scavenging activity (DPPH, SC50: 1.24 ±0.09 mg/mL), SOD activity (68.71 ±1.28%), inhibition of lipoxygenase activity (75.96 ±7.64 mg/mL) and interfered the interaction of SARS-CoV-2 spike protein and angiotensin-converting enzyme 2 (48.04 ±3.18%). Furthermore, in-silico analysis results supported that liquiritin, 3,5-dicaffeoylquinic acid, and luteolin-7-O-glucoside with the highest affinity between SARS-CoV-2 RBD and human angiotensin-converting enzyme II (hACE2) receptor. Our findings suggest that PAFYY has the potential for anti-SARS-CoV-2 infection, anti-oxidation stress, and anti-inflammation, and may be used as supplements for amelioration or prevention of COVID-19 symptoms, as well as the representative compounds can be used for quality control of PAFYY in the future.

18.
BMC Vet Res ; 18(1): 319, 2022 Aug 18.
Article in English | MEDLINE | ID: covidwho-2002179

ABSTRACT

BACKGROUND: Porcine epidemic diarrhea (PED), a swine epidemic disease caused by porcine epidemic diarrhea virus (PEDV), is characterized by severe watery diarrhea, vomiting, dehydration and high mortality in piglets, and has caused serious economic losses to the global porcine industry. The level of PEDV IgA antibody is a key marker to assess the extent of passive immunity of the resistance against PEDV infection. However, current commercial structure proteins-based kits for detection of PEDV antibody are not affordable, and those kits require complicated antigen preparation procedures, which cannot meet the scope of economic benefits of many large-scale pig companies in China. Therefore, there is an urgent need to develop an accurate, simple, and economical method for IgA detection in clinical samples. In this study, an indirect ELISA (i-ELISA) method was developed based on a purified PEDV epidemic strain (NH-TA2020). RESULTS: The results show that optimal working dilution ratios of PEDV antigen and HRP anti-swine IgA are at 1: 1000 and 1:15000 respectively. The sensitivity of this method is high with the maximum dilution of samples up to 1:160, and coefficients of variation (CV) of both the intra assays and inter assays were no more than 15%. In addition, the relative sensitivities of the i-ELISA were above 90% compared with values from commercial kits in both serum and oral fluid samples. CONCLUSIONS: Our results suggested that the i-ELISA developed in this study was an accurate, simple, and economical method for PEDV-IgA detection in clinical samples.


Subject(s)
Coronavirus Infections , Porcine epidemic diarrhea virus , Swine Diseases , Animals , Antibodies, Viral , Coronavirus Infections/diagnosis , Coronavirus Infections/epidemiology , Coronavirus Infections/veterinary , Diarrhea/veterinary , Enzyme-Linked Immunosorbent Assay/methods , Enzyme-Linked Immunosorbent Assay/veterinary , Immunoglobulin A , Swine
19.
Medicine (Baltimore) ; 101(32): e29964, 2022 Aug 12.
Article in English | MEDLINE | ID: covidwho-1992406

ABSTRACT

Coronavirus disease-19 (COVID-19) caused a global pandemic burden, affecting hundreds of thousands of individuals, having life-threatening outcomes. Traditional Chinese Medicine plays a crucial role in the treatment of patients with COVID-19. The purpose of this study was to investigate the efficacy of combined therapy of qingfeiPaidu (QFPD) capsule and lianhuaqingwen (LHQW) capsule nursing interventions in the treatment of patients with COVID-19. A total of 318 patients with COVID-19 were enrolled and randomly received QFPD (n = 106), LHQW (n = 106), and QFPD-LHQW (n = 106). The clinical characteristics of COVID-19, the total lung severity scores, and blood laboratory indices were recorded in each patient in each group before treatment and at the end of treatment. The outcomes demonstrated that QFPD-LHQW group shortened the length of hospitalization, decreased C-reactive protein, creatine kinase, creatine kinase-myocardial band, lactate dehydrogenase, and blood urea nitrogen levels, and improved clinical symptoms, pulmonary inflammation, and prognosis. At the end of treatment, inflammation, immune function, circulating white blood cells, total lymphocyte count, and glutamic-oxaloacetic transaminase levels improved dramatically in 3 groups compared with baseline. All patients met the discharge criteria after 30-day treatment in 3 groups. Combined therapy of QFPD and LHQW demonstrated significant anti-inflammatory effects compared with those of only QFPD or LHQW in patients with mild and moderate COVID-19. The combined therapies may alleviate clinical symptoms of COVID-19 patients by improving inflammation and immune function.


Subject(s)
COVID-19 Drug Treatment , Drugs, Chinese Herbal , Humans , Inflammation , Medical Records , Retrospective Studies
20.
Emerg Microbes Infect ; 11(1): 2093-2101, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-1978182

ABSTRACT

The replication and pathogenicity of SARS-CoV-2 Omicron BA.2 are comparable to that of BA.1 in experimental animal models. However, BA.2 has rapidly emerged to overtake BA.1 to become the predominant circulating SARS-CoV-2 variant worldwide. Here, we compared the replication fitness of BA.1 and BA.2 in cell culture and in the Syrian hamster model of COVID-19. Using a reverse genetics approach, we found that the BA.1-specific spike mutation G496S compromises its replication fitness, which may contribute to BA.1 being outcompeted by BA.2 in the real world. Additionally, the BA.1-unique G496S substitution confers differentiated sensitivity to therapeutic monoclonal antibodies, which partially recapitulates the immunoevasive phenotype of BA.1 and BA.2. In summary, our study identified G496S as an important determinant during the evolutionary trajectory of SARS-CoV-2.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Antibodies, Monoclonal , Cricetinae , Humans , Mesocricetus , Mutation, Missense , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics
SELECTION OF CITATIONS
SEARCH DETAIL